Egalitarian Paxos

Distributed consensus algorithms in a fault-
tolerant environment
Alex Cappiello

Advised by David Andersen

*These slides were used to arrange a poster that was displayed at Carnegie Mellon’s Computer
Science Undergraduate Research Poster Session on 12/11/13.

Replicated State Machines and
Consensus

Motivation: Replicating data across nodes increases the
throughput for accessing that data and it remains reachable if
one (or more) nodes fail.

Challenge: In a replicated state machine, executing a
command must produce the same result regardless of which
node handles the request. The role of the consensus algorithm
1s to resolve dependencies so that the system agrees on an
ordering of commands.

Existing Paxos Variants

Canonical Paxos requires extensive optimization to be of any
practical use, so many variants exist.

Many rely on having a coordinator (Multi-Paxos, Generalized
Paxos). If this node fails, a new coordinator must be chosen,
during which time the system i1s unavailable. Even worse, 1t can
be a bottleneck, limiting throughput.

Mencius has no coordinator. Each replica handles a predefined
partition of instances. This load balances effectively, but
failures still halt availability while the failure i1s addressed.

ePaxos

EPaxos takes the coordinator-free approach, where clients send
commands directly to any replica, which becomes the leader for
that command.
Goals

1. Optimal commit latency, even in the case of failures.

2. Uniform load balancing to maximize throughput.

3. Graceful performance degradation when replicas are slow
or crash.

Commit Protocol

Receive request:

- Assign instance and sequence number
- Record dependencies

- Send precommit to a quorum of peers

Receive precommit:
- Update dependencies
- Send preaccept-ok to requestor.

After getting a quorum of preaccept-ok

replies:

- If all replies agree, continue with a fast
path commit.

- Otherwise, a slow path commit.

Slow path:

- Determine overall dependencies and
seguence number.

- Send accept to a quorum of peers

Receive accept:
- Update dependencies
- Send accept-ok to requestor.

After getting a quorum of accept-ok replies:
- Run commit.

Fast path:
- Respond to client.
- Send committed to all peers.

AN

Receive committed:
- Update to final parameters.

Existing Work

EPaxos represents recently published work

There 1s More Consensus in Egalitarian Parliaments

Moraru, Iulian and Andersen, David G. and Kaminsky, Michael
In Proc. 24th ACM Symposium on Operating Systems
Principles (SOSP), Nov 2013

Preliminary findings have been promising.

Work to Date

[am writing an implementation of ePaxos in Go. My work so
far has been centered around the commit protocol.

I'm currently working on a simplified algorithm. Optimizations
exist which, reduce the quorum sizes.

One goal of my implementation is to keep the implementation
relatively straightforward, following closely from the
specification, while being robust enough to serve as a starting
point for real-world usage.

Currently, the state of things just short of being able to look
performance in a meaningful way.

Challenges

» Data structures! How should the state be structured? The
commit protocol relies on being able to determine
dependencies quickly.

» Minimizing communication. Commands can be batched to
reduce overhead. It’s also important to avoid sending
unnecessary information.

Next Steps

After wrapping up the core implementation, I've identified a
few areas to explore. I haven’t decided which to focus on yet.

» Adding checkpointing for replica recovery. This is a
necessity for real-world usage.

» Extensive optimization. Relatively straightforward-hunt
for performance wherever possible. One direction is code
optimization. Another is communication optimization, for
example avoiding replicas with generally high latency.

» Hvaluating performance under a wide range of conditions.
Identifying relative strengths and weaknesses as well as
providing a straightforward framework for testing.

